Heat stability of maize endosperm ADP-glucose pyrophosphorylase is enhanced by insertion of a cysteine in the N terminus of the small subunit.

نویسندگان

  • Carla R Lyerly Linebarger
  • Susan K Boehlein
  • Aileen K Sewell
  • Janine Shaw
  • L Curtis Hannah
چکیده

ADP-glucose pyrophosphorylase (AGPase) is a key regulatory enzyme in starch biosynthesis. However, plant AGPases differ in several parameters, including spatial and temporal expression, allosteric regulation, and heat stability. AGPases of cereal endosperms are heat labile, while those in other tissues, such as the potato (Solanum tuberosum) tuber, are heat stable. Sequence comparisons of heat-stable and heat-labile AGPases identified an N-terminal motif unique to heat-stable enzymes. Insertion of this motif into recombinant maize (Zea mays) endosperm AGPase increased the half-life at 58 degrees C more than 70-fold. Km values for physiological substrates were unaffected, although Kcat was doubled. A cysteine within the inserted motif gives rise to small subunit homodimers not found in the wild-type maize enzyme. Placement of this N-terminal motif into a mosaic small subunit containing the N terminus from maize endosperm and the C terminus from potato tuber AGPase increases heat stability more than 300-fold.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of an autonomously activated plant ADP-glucose pyrophosphorylase.

ADP-glucose pyrophosphorylase (AGPase) catalyzes the rate-limiting step in starch biosynthesis in plants and changes in its catalytic and/or allosteric properties can lead to increased starch production. Recently, a maize (Zea mays)/potato (Solanum tuberosum) small subunit mosaic, MP [Mos(1-198)], containing the first 198 amino acids of the small subunit of the maize endosperm enzyme and the la...

متن کامل

Maize endosperm ADP-glucose pyrophosphorylase SHRUNKEN2 and BRITTLE2 subunit interactions

ADP-glucose pyrophosphorylase (AGP) represents a key regulatory step in polysaccharide synthesis in organisms ranging from bacteria to plants. Higher plant AGPs are complex in nature and are heterotetramers consisting of two similar but distinct subunits. How the subunits are assembled into enzymatically active polymers is not yet understood. Here, we address this issue by using naturally occur...

متن کامل

Multiple forms of maize endosperm adp-glucose pyrophosphorylase and their control by shrunken-2 and brittle-2.

Heat-labile and heat stable forms of ADP-glucose pyrophosphorylase were identified in the maize endosperm. The heat-labile form is destroyed by normal electrophoretic conditions. The heat-stable form corresponds to pyrophosphorylase B. In wild type, 96% of the total activity is heat labile. Both forms are reduced in 11 brittle-2 (bt2) and 12 shrunken-2 (sh2) mutants. The heat-labile form is red...

متن کامل

Characterization of the genes encoding the cytosolic and plastidial forms of ADP-glucose pyrophosphorylase in wheat endosperm.

In most species, the synthesis of ADP-glucose (Glc) by the enzyme ADP-Glc pyrophosphorylase (AGPase) occurs entirely within the plastids in all tissues so far examined. However, in the endosperm of many, if not all grasses, a second form of AGPase synthesizes ADP-Glc outside the plastid, presumably in the cytosol. In this paper, we show that in the endosperm of wheat (Triticum aestivum), the cy...

متن کامل

Heat stability and allosteric properties of the maize endosperm ADP-glucose pyrophosphorylase are intimately intertwined.

ADP-glucose (Glc) pyrophosphorylase (AGPase), a key regulatory enzyme in starch biosynthesis, is highly regulated. Transgenic approaches in four plant species showed that alterations in either thermal stability or allosteric modulation increase starch synthesis. Here, we show that the classic regulators 3-phosphoglyceric acid (3-PGA) and inorganic phosphate (Pi) stabilize maize (Zea mays) endos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 139 4  شماره 

صفحات  -

تاریخ انتشار 2005